49 research outputs found

    Assessment of the performance boundaries of very low specific thrust direct-drive turbofan engines at aircraft level for EIS 2025

    Get PDF
    Within the past decade, concerns over the environmental impact of civil aviation have pushed the research community towards the development of more efficient propulsion technology, which delivers a lower carbon and NOx footprint. The current progress achieved in the various specialised disciplines creates the need to redefine the performance barrier achievable by 2025 state-of-the-art aero-engines. This paper summarises some of the latest advancements within the gas turbine research community on the performance modelling and analysis of very low dspecific thrust direct-drive turbofan engines for EIS 2025. Engine and aircraft performance models were used to predict the extent of fuel burn reduction at aircraft level that could be achieved by reducing the engine specific thrust level , increasing operating pressure and temperature levels and applying technology factors representing a step beyond current state-of-the-art. The models represented modern three-spool direct-drive turbofans powering a typical A350XWB-type aircraft. The outputs of the engine design of experiments (DoE) exercise resulted in three most promising candidates. Targeting EIS in 2025, the final optimum design showed 14.81% block fuel improvement for a representative long (7000nm) range mission, accompanied by 30.9% penalty on engine weight. These results propose that with current technology level, at the lower end of the specific thrust range, there is still available design space for the direct-drive turbofan architectur

    Dynamic simulation of a rotorcraft hybrid engine in Simcenter Amesim

    Get PDF
    This paper assesses a series hybrid propulsion system utilizing a recuperated gas turbine configuration. An adapted engine model capable to reproduce a turboshaft engine steady state and transient operation is built and used as a baseline for a recuperated engine. The recuperated engine presents a specific fuel consumption improvement of more than 15% at maximum continuous rating at the expense of surge margin which is reduced. An Oil and Gas (OAG) mission of a Twin Engine Medium helicopter has been used for assessing the hybrid configuration. The thermo-electric system brings a certain level of flexibility allowing for the recuperated engine to operate for high take-off weight cases. If envisioned 2025 technology is considered the fuel benefit of the series hybrid recuperated configuration for the OAG mission is in the range of 5%. The integrated system models (gas turbine, electric and heat exchanger systems) are built in Simcenter Amesim, a system modelling platform allowing for both steady state and dynamic simulation

    Novel fan configuration for distributed propulsion systems with boundary layer ingestion on an hybrid wing body airframe

    Get PDF
    The performance benefits of directly ingesting the boundary layer (BLI) on air vehicles with distributed propulsion (DP) systems has been documented and explored extensively. However, numerous investigations have demonstrated that the increase of the flow distortion in the inlets of conventional propulsors can dramatically reduce the expected benefits. Hence, this work presents an alternative fan configuration to re-energize the boundary layer, and at the same time, to perform properly in a distorted and non-uniform flow-field. This conceptual design utilizes a two-dimension idealized fan and replaces the rotational movement with linear displacement, avoiding the undesired effects of circumferential distortion on the propulsor operation. A quasi two-dimensional model based on the Discretized Miller approach has been used to compare the proposed configuration with a conventional axial fan. From the results obtained, it is observed that the thermal performance of the fan is less affected for the proposed configuration and furthermore, intake pressure losses are ameliorated by the use of a single mailbox shape inlet. The performance assessment of the proposed configuration coupled on the N3-X aircraft shows benefits of 4% in fuel savings compared with current BLI turbo-machinery configurations. The main contribution of this study lies on the definition of a preliminary design for an alternative propulsor configuration able to deal with circumferential distortion

    Sustainable aviation electrification: a comprehensive review of electric propulsion system architectures, energy management, and control

    Get PDF
    The civil aviation sector plays an increasingly significant role in transportation sustainability in the environmental, economic, and social dimensions. Driven by the concerns of sustainability in the aviation sector, more electrified aircraft propulsion technologies have emerged and form a very promising approach to future sustainable and decarbonized aviation. This review paper aims to provide a comprehensive and broad-scope survey of the recent progress and development trends in sustainable aviation electrification. Firstly, the architectures of electrified aircraft propulsion are presented with a detailed analysis of the benefits, challenges, and studies/applications to date. Then, the challenges and technical barriers of electrified aircraft propulsion control system design are discussed, followed by a summary of the control methods frequently used in aircraft propulsion systems. Next, the mainstream energy management strategies are investigated and further utilized to minimize the block fuel burn, emissions, and economic cost. Finally, an overview of the development trends of aviation electrification is provided

    Nonlinear model predictive control-based optimal energy management for hybrid electric aircraft considering aerodynamics-propulsion coupling effects

    Get PDF
    Hybrid electric propulsion systems have been identified as the feasible solutions for regional jets and narrow-body aircrafts to reduce block fuel burn, emissions, and operating cost. In this paper, a Nonlinear Model Predictive Control based optimal energy management scheme (MPC-EMS) has been proposed to minimize the block fuel burn during flight. Firstly, the Artificial Neural Network (ANN) model is adopted to predict turbofan engine performance, meanwhile gas turbine-electrical powertrain integration is investigated and analyzed for typical operating conditions. Then, by combining a point-mass aircraft dynamic model, nonlinear model predictive control with Cross-Entropy Method (CEM) is proposed to obtain optimal energy management based on a fully coupled aerodynamics-propulsion hybrid electric aircraft model. Besides, this state-constrained optimal control problem is re-formulated as a state-unconstrained problem with penalty function to reduce the computational load. Finally, the proposed MPC-EMS algorithm is applied to Boeing 737-800 aircraft with mechanically parallel hybrid electric propulsion configuration to minimize the block fuel burn and compared with the optimization results using global Genetic Algorithm (GA) based EMS and Equivalent Consumption Minimization Strategy (ECMS). The simulation results indicate that the proposed MPC-EMS can effectively reduce the computational time compared with Global GA-based EMS while achieving global optimization performance with only a minor difference of 1.71% of block fuel burn and emissions reductions

    Assessment of hydrogen fuel for rotorcraft applications

    Get PDF
    This paper presents the application of a multidisciplinary approach for the preliminary design and evaluation of the potential improvements in performance and environmental impact through the utilization of compressed (CGH2) and liquefied (LH2) hydrogen fuel for a civil tilt-rotor modelled after the NASA XV-15. The methodology deployed comprises models for rotorcraft flight dynamics, engine performance, flight path analysis, hydrogen tank and thermal management system sizing. Trade-offs between gravimetric efficiency, energy consumption, fuel burn, CO2 emissions, and cost are quantified and compared to the kerosene-fuelled rotorcraft. The analysis carried out suggests that for these vehicle scales, gravimetric efficiencies of the order of 13% and 30% can be attained for compressed and liquid hydrogen storage, respectively leading to reduced range capability relative to the baseline tilt-rotor by at least 40%. At mission level, it is shown that the hydrogen-fuelled configurations result in increased energy consumption by at least 12% (LH2) and 5% (CGH2) but at the same time, significantly reduced life-cycle carbon emissions compared to the kerosene counterpart. Although LH2 storage at cryogenic conditions has a higher gravimetric efficiency than CGH2 (at 700 bar), it is shown that for this class of rotorcraft, the latter is more energy efficient when the thermal management system for fuel pressurization and heating prior to combustion is accounted for

    A marine turbocharger retrofitting platform

    Get PDF
    A turbocharger retrofitting platform utilizing 1D models for calculating turbomachinery components maps and a fully coupled process for integration with the turbomachinery components and the diesel engine, is presented. The platform has been developed with two modes of operation, allowing the retrofitting process to become fully automatic. In the first mode, available turbo-components are examined, in order to select the one that best matches the entire engine system, aiming to retain or improve the diesel engine efficiency. In the second mode, an optimization procedure is employed, in order to redesign the compressor to match the entire system in an optimum way. Dimensionless parameters are used as optimization variables, for a given compressor mass flow and power. A retrofitting case study is presented, where three retrofitting options are analyzed (compressor retrofit, turbocharger retrofit and compressor redesign). In the first and second option, turbocharger retrofitting is carried out, using available turbo-components. It is shown that initial performance cannot be reconstituted using off-the-self solutions. In the third option, compressor designing is performed, using the optimization mode, in order to provide an improved retrofitting solution, aiming to at least reconstituting the original diesel engine performance. Finally, a CFD analysis is carried out, in order to validate the compressor optimization tool capability to capture the performance trends, based on geometry variation

    A marine turbocharger retrofitting platform

    Get PDF
    A turbocharger retrofitting platform utilizing 1D models for calculating turbomachinery components maps and a fully coupled process for integration with the turbomachinery components and the diesel engine, is presented. The platform has been developed with two modes of operation, allowing the retrofitting process to become fully automatic. In the first mode, available turbo-components are examined, in order to select the one that best matches the entire engine system, aiming to retain or improve the diesel engine efficiency. In the second mode, an optimization procedure is employed, in order to redesign the compressor to match the entire system in an optimum way. Dimensionless parameters are used as optimization variables, for a given compressor mass flow and power. A retrofitting case study is presented, where three retrofitting options are analyzed (compressor retrofit, turbocharger retrofit and compressor redesign). In the first and second option, turbocharger retrofitting is carried out, using available turbo-components. It is shown that initial performance cannot be reconstituted using off-the-self solutions. In the third option, compressor designing is performed, using the optimization mode, in order to provide an improved retrofitting solution, aiming to at least reconstituting the original diesel engine performance. Finally, a CFD analysis is carried out, in order to validate the compressor optimization tool capability to capture the performance trends, based on geometry variatio

    Impact of gas turbine flexibility improvements on combined cycle gas turbine performance

    Get PDF
    The improvement of gas turbines flexibility has been driven by more use of renewable sources of power due to environmental concerns. There are different approaches to improving gas turbine flexibility, and they have performance implications for the bottoming cycle in the combined cycle gas turbine (CCGT) operation. The CCGT configuration is favourable in generating more power output, due to the higher thermal efficiency that is key to the economic viability of electric utility companies. However, the flexibility benefits obtained in the gas turbine is often not translated to the overall CCGT operation. In this study, the flexibility improvements are the minimum environmental load (MEL) and ramp-up rates, that are facilitated by gas turbine compressor air extraction and injection, respectively. The bottoming cycle has been modelled in this study, based on the detailed cascade approach, also using the exhaust gas conditions of the topping cycle model from recent studies of gas turbine flexibility by the authors. At the design full load, the CCGT performance is verified and subsequent off-design cases from the gas turbine air extraction and injection simulations are replicated for the bottoming cycle. The MEL extension on the gas turbine that brings about a reduction in the engine power output results in a higher steam turbine power output due to higher exhaust gas temperature of the former. This curtails the extended MEL of the CCGT to 19% improvement, as opposed to 34% for the stand-alone gas turbine. For the CCGT ramp-up rate improvement with air injection, a 51% increase was attained. This is 3% point lower than the stand-alone gas turbine, arising from the lower steam turbine ramp-up rate. The study has shown that the flexibility improvements in the topping cycle also apply to the overall CCGT, despite constraints from the bottoming cycle

    Techno-economic-environmental evaluation of aircraft propulsion electrification: Surrogate-based multi-mission optimal design approach

    Get PDF
    Driven by the sustainability initiatives in the aviation sector, the emerging technologies of aircraft propulsion electrification have been identified as the promising approach to realize sustainable and decarbonized aviation. This study proposes a surrogate-based multi-mission optimal design approach for aircraft propulsion electrification, which innovatively incorporates realistic aviation operations into the electric aircraft design, with the aim of improving the overall aircraft fuel economy over multiple flight missions and conditions in practical scenarios. The proposed optimal design approach starts with the flight route data analysis to cluster the flight operational data using gaussian mixture model, so that a concise representation of flight mission profiles can be achieved. Then, an optimal orthogonal array-based Latin hypercubes are employed to generate sampling points of design variables for electrified aircraft propulsion. The mission analysis is performed with coupled propulsion-airframe integration in order to propose energy management strategy for mission-dependent aircraft performance. Consequently, fuel economy surrogate model is established via support vector machines to obtain the optimal design points of electrified aircraft propulsion. For assessing the viability of novel propulsion technologies, techno-economic evaluation is conducted using sensitivity analysis and breakeven electricity prices under a series of environmental regulatory policy scenarios
    corecore